随伴行列の定義と大切な8つの性質

最終更新 2018年 5月18日
随伴行列の定義
  行列 $A$ の随伴行列 $A^{\dagger}$ とは、 $A$ の転置行列の各成分を複素共役にしたものである。 すなわち、 $A$ の各成分を $A_{ji}$ と書き表すとき、 $A^{\dagger}$ の各成分 $A^{\dagger}_{ij}$ は、
随伴行列の定義
と定義される。
:
  行列
の随伴行列 $A^{\dagger}$ は、
随伴行列の例
である。
随伴行列の反線形性
  随伴行列の反線形性を持つ。 すなわち、
随伴行列の反線形性
が成り立つ。

証明
  行列 $A$ の随伴行列 $A^{\dagger}$ とは、 $A$ の転置行列の各成分を複素共役にしたものである。 よって、 $A$ の各成分を $A_{ij}$ と書き表すとき、 $A^{\dagger}$ の各成分 $A^{\dagger}_{ij}$ は、
である。 ここで $A^{*}_{ji} $は $A_{ji}$ の複素共役である。 同じように $B$ の各成分を $B_{ij}$ と書き表すとき、
である。
  線形結合 $\alpha A + \beta B$ の成分 $(\alpha A + \beta B)^{\dagger}_{ij}$ も同様に
であるが、 和の行列の成分がそれぞれの行列の成分の和に等しいことから、
と表せる。 これと $(1)$ と $(2)$ から、
が成り立つ。 よって、
である。

積の随伴行列
  行列 $A$ と $B$ の積の随伴行列 $(AB)^{\dagger}$ は、 積の順番を逆にした随伴行列の積に等しい。 すなわち、
積の随伴行列
が成り立つ。

証明
  $A$ と $B$ をそれぞれ $l$ 行 $m$ 列 と $m$ 行 $n$ 列の行列とする。 行列 $A$ の随伴行列 $A^{\dagger}$ とは、 $A$ の転置行列の各成分を複素共役にしたものである。 よって、 $A$ の各成分を $A_{ij}$ と書き表すとき、 $A^{\dagger}$ の各成分 $A^{\dagger}_{ij}$ は、
である。 ここで $A^{*}_{ji} $は $A_{ji}$ の複素共役である。 同じように $B$ の各成分を $B_{ij}$ と書き表すとき、
である。
  積 $AB$ の随伴行列の成分 $(AB)^{\dagger}_{ij}$ も同様に
であるが、 行列の積の定義から、
と表せる。 これと $(1)$ と $(2)$ から、
が成り立つ。 よって、
である。

随伴行列の逆行列
  随伴行列 $A^{\dagger}$ の逆行列は、 逆行列の随伴行列である。 すなわち、
随伴行列の逆行列
が成り立つ。

証明
  正方行列 $A$ が逆行列 $A^{-1}$ を持つとき、 $A$ と $A^{-1}$ の間には、
の二つの関係が成立する。
  ここで 積の随伴行列が順番を入れ替えた随伴行列の積に等しいことを用いると、 $A^{-1}A$ の随伴行列が、
であり、 単位行列の随伴行列が単位行列であること ($I^{\dagger} = I$) から、 $(1)$ の上の式より、
が成立する。
  また同様に $AA^{-1}$ の随伴行列が、
であることから、 $(1)$ の上の式より、
である。 以上まとめると、
が成立する。
  一般に正方行列 $A$ と $B$ が
を満たすとき、 $B$ の $A$ の逆行列といい、 $B=A^{-1}$ と表す。
  従って、 $(2)$ は $(A^{-1})^{\dagger}$ が $A^{\dagger}$ の逆行列であることを表している。 すなわち、
が成立する。

随伴行列の随伴行列
  随伴行列の随伴行列は、 もとの行列である。 すなわち、
随伴行列の随伴行列
が成り立つ。

証明
  行列 $A$ の随伴行列 $A^{\dagger}$ の各成分 $A^{\dagger}_{ij}$ は、
である。 これを繰り返し用いると、 随伴行列の随伴行列 $(A^{\dagger})^{\dagger}$ の各成分は、
が成り立つ。 したがって、
である。

随伴行列の行列式
  随伴行列の行列式は、 もとの行列の行列式の複素共役である。 すなわち、
随伴行列の行列式
が成り立つ。

証明
  行列式の定義に従って随伴行列の行列式を表すと、
である。 ここで $\sigma$ は置換であり、 $S_{n}$ は置換全体の集合である。 また $\mathrm{sgn}(\sigma)$ は、 偶置換のとき $+1$、 奇置換のとき $-1$ をとる置換符号である (これらについては行列式の定義を参考)。
  随伴行列の定義を用いると、
から、
が成り立つことが分かる。 すなわち、 随伴行列の行列式は、 転置行列の行列式の複素共役に等しい。
  ところで、 一般に転置行列の行列式はもとの行列の行列式に等しいので、 すなわち、
であるので、 上の関係と合わせると、
を得る。

随伴行列の固有値
  随伴行列 $A^{\dagger}$ の固有値は、$A$ の固有値の複素共役である
随伴行列のトレース
  随伴行列のトレースはもとの行列のトレースの複素共役に等しい。 すなわち、
随伴行列のトレース
が成り立つ。

証明
    $n \times n$ の行列 $A$ の各成分を $A_{ij}$ $(i,j=1,2,\cdots, n)$ と表すとき、 $A$ の随伴行列 $A^{\dagger}$ の各成分 $A^{\dagger}_{ij}$ は、 定義から
であるので、 随伴行列の対角成分は、 もとの行列の対角成分の複素共役に等しい。 すなわち、
が成り立つ。 これと トレースの定義から
である。

随伴行列と複素内積の関係
  任意の $n$ 次複素ベクトル $\mathbf{x}, \mathbf{y}$ の内積を
と定義するとき、任意の正方行列 $A$ は、
随伴行列と複素内積の関係
を満たす。
  ここで、$A^{\dagger}$ は $A$ の随伴行列であり、$x_{i}^{*}$ はベクトルの成分 $x_{i}$ の複素共役である。
補足
  本サイトでは、 随伴の記号に $\dagger$ を用い、 複素共役に $*$ を用いているが、 これは物理学や一部の工学の慣習に従っている。 一方で数学の世界では、 随伴の記号に $*$ を用い、 複素共役にバー ( 例: $\overline{A}$ ) を用いることが多い。